

Evaluation of two recombinant viral-vectored vaccines against orf virus in sheep

Alex Gómez¹, A. Rodríguez-Largo¹, I. Echeverría², L. Puzol², I. Moncayola², L. Arriazu², A. Calero², E. Pérez¹, N. Calvo-Sánchez¹, I. Glaria², M. Nazabal³, I. Hualde³, L. Luján¹ and R. Reina² ¹ Department of Animal Pathology, University of Zaragoza, ² Institute of Agrobiotechnology, CSIC-Government of Navarra, ³ Navarra Institute of Technology and Food Industry, INTIA, Pamplona, ES

Introduction

Orf virus (ORFV), a member of the genus Parapoxvirus, is the causative agent of contagious ecthyma, a disease responsible for severe economic losses in small ruminants worldwide. Currently, commercial vaccines are based on attenuated strains of ORFV that elicit short-lived protection and can reverse to virulence, highlighting the need for new vaccine prototypes. Sendai virus (SeV) has obtained promising safety and protection potency results as a viral vector in the development of vaccine prototypes for many viral pathogens. In sheep, SeV has shown efficient transgene expression and robust innate immune response activation *in vitro*. SeV-based vaccines could be utilized as an alternative strategy to develop a new generation of safe and efficacious vaccine against ORFV infection in small ruminants. This study evaluated the safety and protective efficacy of two recombinant Sendai virus (rSeV-GFP)-based vectors expressing proteins ORFV B2L (rSeV-GFP-B2L) and ORFV 059 (rSeV-GFP-059) in sheep, after challenge with wildtype ORFV.

Material and methods

ORFV B2L and ORFV 059 gene sequences were amplified from wyldtype ORFV and cloned

into rSeV-GFP plasmid by In-FUSION cloning generating recombinant plasmids rSeV-GFP-B2L

SeV reverse genetics system was used for recombinant viral vector production. Briefly, antigenomic rSeV-GFP, rSeV-GFP-B2L or rSeV-GFP-059 and accessory plasmids (T7-SeV- N, T7-SeV-P, T7-SeV-L, T7opt) were co-tranfected in 60-70% confluent HEK293T cells using Jet Prime transfection reagent (1:2 ratio).

Cell transfection efficiency was monitored by fluorescence microscopy and GFP positive cell culture supernatants collected at 96-144 h, clarified by centrifugation at 2500 rpm for 5 min and stored at -80°C. rSeV-GFP, rSeV-GFP-B2L and rSEV-GFP-059 viruses were titrated achieving 10⁶ TCID₅₀/mL.

10 ³ TCID ₅₀ /ml	Days	0	13	28	43	49	91	110
Group 3	Vaccination number	1		2				
rSeV-GFP-B2L 10 ³ TCID _{ro} /ml	Challenge number					1	2	
	Sera sampling number	1	2	3	4			5
Group A		1						

Group 4

rSeV-GFP-059

10³TCID₅₀/ml

rSeV-GFP

and rSeV-GFP-059.

Sheep were randomly divided into 4 groups and inoculated with 1 ml of PBS or a pseudo-virus suspension containing 10^3 TCID₅₀/ml. First immunization (day 0) was intranasally with a nebulizer. 28 days post-priming (dpi), booster was performed with the same dose per animal. However, half of animals in each group was inoculated intranasally and the rest subcutaneously. For challenging, 10³ TCID₅₀/mL of wildtype ORFV was inoculated intradermally with Dermojet syringe in the lip. Challenge was performed twice, 21 and 63 days after booster.

Gross ORFV associated lesions were evaluated and scored from 0 (no lesions) to 1 (presence of lesions). Severity of microscopic lesions and retropharyngeal lymph nodes and NALT hyperplasia were scored from 0 to 3.

1. Specific ORFV-antibody immune responses		2. Postmortem results						
		Gross lesions		Histopathological severity				
Group 1 (PBS)		Absence	Presence	0	1	2	3	
Group 2 (rSeV-GFP)	Group 1 (n=11)	54.5	45.5	0	0	60	40	
Group 4 (rSeV-GFP-059)	Group 2 (n=11)	72.7	27.3	0	20	20	60	
	Group 3 (n=11)	27.3	72.7	0	20	0	80	
	Group 4 (n=12)	100	0	80	20	0	0	

immunodominant UKEV envelope protein 109. UKEV specific antibodies were detected only in group 4 (rSeV-GFP-059) at 110 dpi.

between intranasally and intradermally boosted animals. Unly one sneep of group 4 presented mild microscopic lesions Significant differences in retropharyngeal lymph nodes and NALT hyperplasia between vaccinated groups were not observed.

Conclusions

- rSeV-GFP-059 provides a complete protection to animals challenged with wildtype ORFV at high pathogenic dose, making it a promising candidate viral vector-based vaccine against ORFV infection
- rSeV-GFP-059 induces robust humoral immune response. To determinate if serum antibodies neutralize ORFV, a seroneutralization assay is in development
- rSeV-GFP-B2L might favor ORFV infection