# Sequencing of the southern white rhinoceros (*Ceratotherium simum* simum) cardiac troponin I gene and analytical validation of a pointof-care cardiac troponin I immunoassay

Yolandi Rautenbach<sup>1,2</sup> Sven DC Parsons<sup>3</sup> Amelia Goddard<sup>1,2</sup>, Leith CR Meyer<sup>2, 4</sup>, Peter Buss<sup>2, 5</sup>, Emma H Hooijberg<sup>1, 2</sup>

<sup>1</sup> Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, South Africa
<sup>2</sup> Centre for Veterinary Wildlife Research, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, South Africa
<sup>3</sup> Afrivet Business Management, South Africa
<sup>4</sup> Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria, South Africa

<sup>5</sup> Veterinary Wildlife Services, South African National Parks, Kruger National Park, Skukuza, South Africa

### **Background:**

- Conservation strategies for the near threatened white rhinoceros
- (Ceratotherium simum simum) often involve chemical
- immobilisation and translocation.
- Dehydration, acid-base disturbances, hypoxaemia, negative energy balance, stress-induced immunomodulation and skeletal muscle injury are common adverse changes in translocated rhinoceros.

## **Results:**

- Nucleotide sequence identity of the rhinoceros cTnI gene with human and equine cTnI genes was high (97% and 96%, respectively).
- Predicted amino acid sequence matched assay antibody epitope-
- Investigation into potential concurrent myocardial injury in transported rhinoceros is limited due to a lack of validated

#### immunoassays.

# **Objectives:**

- Firstly, to determine the mRNA transcript sequence of white rhinoceros' cardiac troponin I (cTnI) and evaluate sequence homology.
- Secondly, to validate a point-of-care cTnl immunoassay with antibody epitopes that match the predicted rhinoceros cTnl protein sequence.

#### **Methods:**

- binding sites.
- The assay was linear within a range of 0.05-38.39 ng/mL.
- Imprecision ranged from 1.9%-8.0%.
- The proportional systematic error was -1.87% and was  $< TE_a$ .
- Limit of the blank was below the detection limit of the assay (<0.03 ng/mL) and the limit of detection was 0.04 ng/mL.

- RNA was extracted from ventricular myocardium of deceased adult white rhinoceros and cDNA was synthesised via RT-PCR and sequenced.
- The predicted cTnI amino acid sequence was generated using UniProt, and homology with human cTnI determined.
- The Siemens Stratus<sup>®</sup> CS 200 Acute Troponin assay antibody epitopes were matched against rhinoceros cTnl protein.
- Assay validation was performed using homogenates of rhinoceros myocardium and serum.
- Validation results were assessed against prescribed total allowable error (TE<sub>a</sub>) of 70%.



AGGAGGATACAGAGAAGGAAAACCGGGAGGTGGGAGACTGGCGCAAGAACATCGACGCGC

TAAGCGGAATGGAGGGCCGCAAGAAAAAGTTTGAGGGCTGAgctggcctgcccaccgctctggccct

#### gaggatggccctgaggaaa

**Figure 1:** Nucleotide sequence of southern white rhinoceros (*Ceratotherium simum simum*) cardiac troponin I (cTnI) mRNA. The coding regions are indicated in uppercase letters; the untranslated regions are indicated in lowercase letters.



Figure 2: Reportable range of cardiac troponin I assay of the Siemens Stratus® CS 200 Acute Care<sup>TM</sup> Analyser

#### **Conclusion:**

The Stratus CS 200 is suitable for measurement of cTnI in white

rhinoceros and can be used to investigate potential myocardial injury in this species.

## Acknowledgements:

This work was funded by the research grant of the European College of

Veterinary Clinical Pathology (ECVCP) and the South African Health and

Welfare Sector Education and Training Authority (HWSETA).







