Abnormal WDF and WNR scattergrams from Sysmex XN-V in a dog

Contributors

${ }^{1}$ Theo Chenal, ${ }^{1}$ Maud Guerlin, ${ }^{1,3}$ Fanny Granat, ${ }^{2}$ Nathalie Bourges-Abella, ${ }^{1,2}$ Anne Geffré, ${ }^{1,2}$ Catherine Trumel

${ }^{1}$ Laboratoire Central de Biologie Médicale, ENVT, France
${ }^{2}$ CREFRE, Université de Toulouse, Inserm, UPS, ENVT, Toulouse, France
${ }^{3}$ CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, ENVT, Toulouse, France

Theo Chenal - theo.chenal@envt.fr

Specimen

EDTA whole blood and abdominal effusion

Signalment

4-month-old intact male, Australian shepherd dog

History

The dog was referred to the emergency unit at the veterinary teaching hospital of Toulouse, France, for the medical care of a parvovirus infection diagnosed by a positive SNAP test (SNAP Parvo, Idexx Laboratories, Westbrook, USA) in the context of vomiting and diarrhoea evolving for 2 days.

Clinical findings

Clinical examination revealed pale mucous membranes and palpable fluid accumulation in the abdomen.

A CBC performed at the emergency unit with the ProCyte Dx (Idexx, Westbrook, USA)) (Table1) revealed a marked normocytic normochromic regenerative anemia, and leukocytosis with neutrophilia, monocytosis, and thrombocytopenia with a flag and an increased MPV. The thrombocytopenia was suspected to be true despite the observation of few platelet-fibrin clots on the blood smear.

An abdominal point-of-care ultrasound (POCUS) confirmed the presence of an abdominal effusion. The dog was transfused with compatible blood.

The next day, a complete abdominal ultrasound was performed by a specialist and revealed a large amount of abdominal effusion and a hyperechoic mass with ill-defined contours located between the liver and the stomach and consistent with a hematoma.
Blood and effusion were sampled and analyzed with the Sysmex XN-V (Sysmex, Kobe, Japan) (Figure 1; Tables 1 and 2) and smears were reviewed. Very few platelets with no clumps were observed in blood and effusion. Hemostasis panel was performed on STA Compact Max3 (Stago, Asnières-sur-Seine, France) and was unremarkable (Table 3).

Figure 1: Sysmex XN-V WBC differential (WDF) and white cell nucleated (WNR) scattergrams of EDTA-blood specimen from a healthy 3-year-old dog (A) and EDTA-blood (B) and EDTA-effusion (C) specimens from a 4-month-old Australian shepherd dog with Parvovirus infection.
Abbreviations: D, debris; E, eosinophils; FSC, forward scatter; L, lymphocytes; M, monocytes; N, neutrophils; nRBC, nucleated red blood cells; SFL, side fluorescence light; SSC, side scatter; WBC, white blood cells

Table 1: Hematological numerical results for EDTA-blood specimens with ProCyte Dx (before transfusion) and Sysmex XN-V (after transfusion) and EDTA-effusion specimen with Sysmex XN-V.

ProCyte Dx	Sysmex XN-V	Sysmex XN-V
Blood specimen	Blood specimen	Effusion

Variable	Result	RI	Result	RI	Result
RBC (x1012/L)	2.41	5.65-8.87	3.46	5.20-7.90	3.44
HCT (\%)	16.5	37.3-61.7	25.6	35.0-52.0	25.1
HGB (g/dL)	5.8	13.1-20.5	8.5	12.4-19.2	8.4
MCV (fL)	68.5	61.6-73.5	74.0	60.0-71.0	73.0
MCH (pg)	24.1	21.2-25.9	24.6	21.9-26.3	24.4
MCHC (g/dL)	35.2	32.0-37.9	33.2	34.4-38.1	33.5
RDW (\%)	14.9	13.6-21.7	12.1	13.2-19.1	12.0
RET (\%)	3.7	-	1.45	-	1.44
Corrected RET (\%)	1.4	0-1	0.83	0-1	-
RET (x10\%/L)	89.4	10.0-110.0	50.2	19.1-150.1	49.5
WBC (x109/L)	18.23	5.05-16.76	$18.88{ }^{\text {a }}$	5.60-20.40	17.03 ${ }^{\text {a }}$
Neutrophils (x109/L)	14.72	2.95-11.64	15.45	2.90-13.60	15.12
Lymphocytes (x109/L)	2.06	1.05-5.10	0.78	1.10-5.30	1.01
Monocytes (x109/L)	1.35	0.16-1.12	0.71	0.40-1.60	0.65
Eosinophils (x109/L)	0.09	0.06-1.23	1.44	0.10-1.50	0.13
Basophils (x109/L)	0.01	0.00-0.10	0.50	Rare	0.12
PLT ${ }^{\text {b }}$ (x109/L)	2*	148-484	12*	108-562	5
MPV (fL)	23.0	8.7-13.2	7.7*	-	10.5

Bolded values are outside the reference interval (RI).
Abbreviations: HGB, hemoglobin; HCT, hematocrit; MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin concentration; MCV, mean cell volume; MPV, mean platelet volume; nRBCs, nucleated red blood cells; PLT, platelets; RBC, red blood cells; RET, reticulocytes; RDW, red cell distribution width; WBC, white blood cells; *, error flag.
${ }^{\text {a }}$ Leukocyte count obtained with the XN-V analyzer WNR channel
b Platelet counts were obtained with the impedance channel with the ProCyte Dx and with the optical channel with the Sysmex XN-V

Table 2: Additional results for abdominal effusion and EDTA-whole blood

Variable	Abdominal effusion	EDTA- whole blood
Macroscopic appearance	Red, opaque	Normal
TNCC ${ }^{\text {a }}$ ($\times 10^{9} / \mathrm{L}$)	16.69	-
Total proteins ${ }^{\text {b }}$ (g/L)	33	-
Packed cell volume ${ }^{\text {c (L/L) }}$	25	25
Manual cell differential ${ }^{\text {c }}$ (\%)		
Neutrophils	69	90
Lymphocytes	4	3
Monocytes/Macrophages	27	5
Eosinophils	0	2

Abbreviations: TNCC, Total nucleated cells
${ }^{\text {a }}$ Leukocyte count obtained with the XN-V analyzer WDF channel
b Obtained on supernatant with a refractometer
c Obtained by manual methods

Table 3: Hemostasis panel

Variable	Result	Reference interval
Antithrombin III (\%)	111	$102-191$
FDP (mg/L)	<5	$0-5$
Fibrinogen (g/L)	3.7	$1.3-4.7$
PT (s)	8.0	$7.3-9.9$
aPTT (s)	15.8	$12.9-16.9$

Abbreviations: aPTT, activated partial thromboplastin time; FDP, Fibrin degradation product ; PT, prothrombin time

Questions

1/ Give your interpretation and the most probable cause for the abdominal effusion.
2/ Concerning the CBC performed on Sysmex XN-V (Figure 1), what is the main anomaly in the scattergrams from the case compared to the ones of a healthy dog? What does it imply regarding numerical results?

3/ What could be the cause of the abnormal scattergrams and how would you investigate it?

